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Abstract—In the presence of zinc and a catalytic amount of copper(I) chloride, 4-bromo-4,4-difluoroacetoacetate 4 reacted with
a series of aromatic aldehydes and aryl alkyl ketones to give the corresponding �-hydroxyl-�,�-difluoro-�-ketoesters 6 in good to
excellent yields under mild conditions. © 2001 Published by Elsevier Science Ltd.

The preparation of gem-difluoromethylene substituted
molecules falls broadly into two classes. The first involves
direct gem-difluorination,5 and the second draws from
the construction of molecules derived from CF2-syn-
thons. The Reformatsky reaction of halodifluoroacetates
and halodifluoroketones is by far the most common of
all the CF2-synthon approaches.6 Its products are ver-
satile intermediates which have found significant use in
the synthesis of peptidase inhibitors designed around
�,�-difluoro ketones,7 difluoromethylene analogues of
carbohydrates,8 nucleosides,9 and natural products.10

However, the Reformatsky reaction of 4-bromo-4,4-
difluoroacetoacetate with aldehydes and ketones has not
been examined. In this work, we report the preparation
of a series of �-hydroxy-�,�-difluoro-�-ketoesters by
zinc-mediated Reformatsky-type aldol reactions of 4-
bromo-4,4-difluoroacetoacetate 4 with a series of aro-
matic aldehydes and aryl alkyl ketones. The resulting
aldol-addition products are anticipated to contribute to
the construction of fluorinated intermediates by further
transformation.

The selective introduction of fluorine into organic com-
pounds has been receiving increasing attention in
research on biological chemistry and in the development
of medicines due to fluorine’s unique biological and
physical properties.1 Particularly, the gem-
difluoromethylene group, with the CF2-carbon at both
the sp3 and sp2 hybridization level is a key structural unit
in many fluorinated compounds of biological and phar-
maceutical significance.2 �,�-Difluorination of ketones
imparts increased electrophilicity to the carbonyl and
contributes to the formation of stable hydrates and
hemiketals which are purported to mimic the tetrahedral
transition states involved in the hydrolytic action of
proteases and estereases, and enzyme inhibition can
occur when the nucleophilic hydroxyl is part of the active
site.3 In addition, since difluoromethylene-containing
compounds often exhibit biological stability, the
difluoromethylene functionality may prove particularly
significant as a replacement for a CH2 or CHOH linkage
at a biochemically labile position.4
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4-Bromo-4,4-difluoroacetoacetate 4 was prepared in
four steps in about 50% yield as shown in Scheme 1.11

In the first step, fluorohaloalkanes reacted with ethyl
vinyl ether in absolute ethanol initiated by sodium
dithionite and sodium bicarbonate to give the fluoro-
haloalkyl diethyl acetals 2, which were oxidized with
Caro’s acid to give the corresponding esters 3 in a 75%
yield over two steps.12 Dehydrohalogenation of the
ester 3, followed by substitution of fluorine with pyrro-
lidine and hydrolysis gave the 4-bromo-4,4-difluoroace-
toacetate 4.13

We conducted the reaction of 4-bromo-4,4-difluoroace-
toacetate 4 with zinc dust and benzaldehyde in refluxing
THF, as recommended for Reformatsky reactions using
bromodifluoroacetates,6a but no reaction occurred. We
then noticed that literature Reformatsky reactions of
chlorodifluoromethyl ketones with aldehydes and
ketones in the presence of 3 equiv. of zinc dust acti-
vated in situ by 0.3 equiv. of copper(I) chloride in
refluxing THF gave �,�-difluoro-�-ketones in good to
excellent yields6f (Scheme 2). Accordingly, the aldol-
addition product 6a (R1=Ph, R2=H) was obtained in
good yield when 4 was reacted with benzaldehyde
under these conditions. In order to establish the opti-
mal conditions for this reaction, we screened various
reaction conditions. Some typical reaction conditions
and the results obtained are summarized in Table 1. We
found that both copper(I) halides and silver acetate
could activate the reaction, and that diethyl ether was
the best solvent.

With the optimized conditions (Table 1, entry 7) in
hand, we next carried out the Reformatsky reaction of
4 with a variety of aromatic aldehydes. Thus, the
reactions of 4 with a variety of aromatic aldehydes in
the presence of both acid-washed zinc dust (3 equiv.)

and a catalytic amount of copper(I) chloride (0.3
equiv.) in ether from 0°C to ambient temperature
occurred smoothly and were completed within 2 h,
affording the aldol products 6 in good to excellent
yields (Table 2, entry 1). Various substituents on the
phenyl ring, either electron-withdrawing or electron-
donating, such as methyl, chloro, bromo, and methoxy,
could be tolerated and had little effect on the yields
except for p-nitrobenzaldehyde which gave no aldol-
addition product under various conditions.14 The aldol-
addition reaction also proceeded with alkyl and
heteroaromatic aldehydes giving moderate and good
yields, respectively, under similar conditions (Table 2,
entry 7, 8). However, the zinc-mediated addition of 4 to
�,�-unsaturated aldehydes, such as acrylaldehyde and
cinnamaldehyde did not occur at all. Although the
products 6 could be obtained through trimethylsilyl
protection of the Reformatsky adducts of ethyl bro-
modifluoroacetate with aldehydes followed by conden-
sation with lithio ethylacetate,15 we provide here a more
direct and convenient method for this transformation.

Aromatic ketones also proved to be efficacious sub-
strates, little or no qualitative difference being observed
amongst the reactions of 4 with aldehydes and ketones.
Ketones containing electron-withdrawing groups gave
higher yields of addition products, presumably due to
the enhanced electrophility of the carbonyl carbon
(Table 2, entry 10). Unfortunately, the reaction of
2-butanone with 4 under the Zn-CuCl conditions failed.
The reaction system became complex as shown by 19F
NMR and only a trace of Reformatsky product was
detected which could not be isolated from the other
unidentified materials. All products exhibited satisfac-
tory spectroscopic data in accord with the assigned
structures.16

Scheme 2.

Table 1. Optimized conditions for the Reformatsky reaction using benzaldehyde

Entrya MX /0.3 equiv. Solvent T (°C) Time (h) Yield (%)b

CuCl THF1 −78 20 –
2 CuCl THF −20 8 –

20�rtTHF 90cCuCl3
CuBr THF4 0�rt 2 86c

5 CuI THF 0�rt 2 85c

6 AgOAc THF 0�rt 6 50
CuCl Ether7 0�rt 2 92
CuCl DMF 0�rt 2 808

CH3CN9 0�rtCuCl 2 –d

a The reaction was conducted on a scale of 0.3 mmol 4 with 0.33 mmol benzaldehyde and 0.9 mmol zinc dust in 0.6 mL solvent.
b Yield determined by 19F NMR.
c 5–10 mol% of HCF2COCH2CO2Et was detected by 19F NMR.
d The reaction mixture became a gel.
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Table 2. The Reformatsky reactions of 4-bromo-4,4-difluoroacetoacetate 4 with aldehydes and ketones.

Product 6Carbonyl compounds Yielda (%)Solvent

R1 R2Entry 5

Ph H1 Ether5a 6a 90
2 5b 2-ClC6H4 H Ether 6b 83

2-BrC6H4 H Ether 6c 803 5c
4-MeC6H4 H Ether5d 6d4 85
4-MeOC6H4 H Ether5 6e5e 91
4-NO2C6H4 H Ether5f 6f6 –

5g7 (CH3)2CHCH2 H THF 6g 30b

2-furyl H Ether5h 6h8 80
5i9 Ph CH3 THF 6i 50b

4-BrC6H4 CH3 THF 6j 45b10 5j
4-CH3OC6H4 CH3 THF5k 6k11 30b

Ph C2H5 THF 6l12 36b5l

a Isolated yields of pure compounds based on 4.
b 30–40 mol% HCF2COCH2CO2Et was detected by 19F NMR.

In summary, we have described the successful Refor-
matsky-type reactions of 4 with a diversity of aromatic
aldehydes, alkyl aldehydes, heteroaromatic aldehydes
and aryl alkyl ketones in the presence of zinc dust
activated in situ by catalytic amounts of copper(I)
chloride to produce �-hydroxy-�,�-difluoro-�-keto-
esters. Further transformations of these products, such
as reduction to 1,3-diol derivatives, intramolecular
cyclization to �-lactones, and diazotization of the active
methylene, are now in progress.
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